A maximum-likelihood galaxy shear measurement code for cosmic gravitational lensing

نویسندگان

  • Joe Zuntz
  • Tomasz Kacprzak
  • Lisa Voigt
  • Michael Hirsch
  • Barnaby Rowe
  • Sarah Bridle
چکیده

We present and describe IM3SHAPE, a new publicly available galaxy shape measurement code for weak gravitational lensing shear. IM3SHAPE performs a maximum likelihood fit of a bulgeplus-disc galaxy model to noisy images, incorporating an applied point spread function. We detail challenges faced and choices made in its design and implementation, and then discuss various limitations that affect this and other maximum likelihood methods. We assess the bias arising from fitting an incorrect galaxy model using simple noise-free images and find that it should not be a concern for current cosmic shear surveys. We test IM3SHAPE on the GREAT08 Challenge image simulations, and meet the requirements for upcoming cosmic shear surveys in the case that the simulations are encompassed by the fitted model, using a simple correction for image noise bias. For the fiducial branch of GREAT08 we obtain a negligible additive shear bias and sub-two percent level multiplicative bias, which is suitable for analysis of current surveys. We fall short of the sub-percent level requirement for upcoming surveys, which we attribute to a combination of noise bias and the mis-match between our galaxy model and the model used in the GREAT08 simulations. We meet the requirements for current surveys across all branches of GREAT08, except those with small or high noise galaxies, which we would cut from our analysis. Using the GREAT08 metric we we obtain a score of Q=717 for the usable branches, relative to the goal of Q=1000 for future experiments. The code is freely available from https://bitbucket.org/joezuntz/im3shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement and calibration of noise bias in weak lensing galaxy shape estimation

Weak gravitational lensing has the potential to constrain cosmological parameters to high precision. However, as shown by the Shear Testing Programmes and Gravitational lensing Accuracy Testing challenges, measuring galaxy shears is a non-trivial task: various methods introduce different systematic biases which have to be accounted for. We investigate how pixel noise on the image affects the bi...

متن کامل

Self Calibration of Gravitational Shear-galaxy Intrinsic Ellipticity Correlation in Weak Lensing Surveys

The existence of non-random galaxy intrinsic ellipticity severely challenges precision cosmic shear measurement. We propose to self calibrate the induced gravitational shear-galaxy intrinsic ellipticity contamination (the GI correlation, Hirata & Seljak 2004) using extra information encoded in the same weak lensing survey. Besides the galaxy ellipticity-galaxy ellipticity correlation, the same ...

متن کامل

New Dimensions in Cosmic Lensing

I review the current status of combing weak gravitational lensing with depth information from redshifts as a direct probe of dark matter and dark energy in the Universe. In particular I highlight: (1) The first maximum likelihood measurement of the cosmic shear power spectrum, with the COMBO17 dataset; (2) A new method for mapping the 3-D dark matter distribution from weak shear, and its first ...

متن کامل

The Galaxy-galaxy Lensing Contribution to the Cosmic Shear Two Point Function

We note that galaxy-galaxy lensing by non-spherical galaxy halos produces a net anti-correlation between the shear of background galaxies and the ellipticity of foreground galaxies. This anti-correlation would contaminate the tomographic cosmological weak lensing two point function if the effect were not taken into account. We compare the size of the galaxy-galaxy lensing contribution to the ch...

متن کامل

Cosmic Shear and Power Spectrum Normalization with the Hubble Space Telescope

Weak lensing by large-scale structure provides a direct measurement of matter fluctuations in the universe. We report a measurement of this ‘cosmic shear’ based on 271 WFPC2 archival images from the Hubble Space Telescope Medium Deep Survey (MDS). Our measurement method and treatment of systematic effects were discussed in an earlier paper. We measure the shear variance on scales ranging from 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013